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We derive the quantum mechanical prediction of −a · b for the singlet spin state using local
measurement functions in the manner of Bell, and verify our derivation in a computer simulation
using the programming language of the program Mathematica.

In this letter we derive the quantum mechanical (QM)
prediction for the EPR-Bohm experiment (EPRB) [1] us-
ing the singlet spin state via local measurement functions
in the manner of Bell [2][3]. Consider a pair of spin one-
half particles, moving freely after production in opposite
directions, with particles 1 and 2 subject, respectively,
to spin measurements along independently chosen unit
directions a and b, which can be located at a spacelike
distance from each other. If initially the pair has vanish-
ing total spin, then the pair’s quantum mechanical spin
state would be the following entangled singlet state:

|Ψn⟩ =
1√
2

{
|n, +⟩1⊗|n, −⟩2 − |n, −⟩1⊗|n, +⟩2

}
, (1)

where

σ · n |n, ±⟩ = ± |n, ±⟩, (2)

describs the quantummechanical eigenstates in which the
particles have spin “up” or “down” in units of ℏ = 2, with
σ being the familiar Pauli spin “vector” (σx, σy, σz).

Quantum mechanically the rotational invariance of the
singlet state |Ψn⟩ ensures that the expectation values of
the individual spin observables σ1 · a and σ2 · b are

Eq.m.(a) = ⟨Ψn|σ1 · a⊗ 1l |Ψn⟩
= ⟨Ψn|σ1 · a |Ψn⟩ = 0 (3)

and Eq.m.(b) = ⟨Ψn| 1l⊗ σ2 · b |Ψn⟩
= ⟨Ψn|σ2 · b |Ψn⟩ = 0 , (4)

where 1l is the identity matrix. The expectation value of
the joint observable σ1 · a⊗ σ2 · b is [4]

Eq.m.(a, b) = ⟨Ψn|σ1 · a ⊗ σ2 · b |Ψn⟩ = −a · b , (5)

regardless of the relative distance between the two remote
locations represented by the unit vectors a and b.

We will now construct some manifestly local measure-
ment functions, in the manner of Bell [2], which leads to
the above result of −a ·b and agrees with the eigenvalues
of the observable operators which involve spins being de-
tected by detectors with the single vector split dictated
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by the conservation of spin angular momentum:

s = s1 = −s2. (6)

Using this, we define

ra = a× s1 and rb = s2 × b (7)

µn = sgn(n · sx)n (8)

A(a, s1) := lim
s1→µa

[
⟨ϕn|(σ · a) (σ · s1)|ϕn⟩+ ra sin (ηas1)

]
= lim

s1→µa

[
q(ηas1 , ra)

]
= sgn(a · s1) = ±1 (9)

B(b, s2) := lim
s2→µb

[
⟨χn|(σ · s2) (σ · b)|χn⟩+ rb sin (ηs1b)

]
= lim

s2→µb

[
q(ηs1b, rb)

]
= sgn(s2 · b) = ±1, (10)

where

|ϕn⟩ =
1√
2

{
|n, +⟩1|n, −⟩3

}
(11)

and |χn⟩ =
1√
2

{
|n, +⟩4|n, −⟩2

}
. (12)

Here σ · a and σ · b represent the detectors of Alice and
Bob with no angular momentum at time of detection,
and σ · s1 = −σ · s2 represents the spin of the fermions
they receive, for which the EPRB experiment is being
performed. The replacement limit functions express the
action of the polarizers at the detection stations and that
|ϕn⟩ and |χn⟩ are simple products and now represent the
wavefunction of the separate particles. The original sin-
glet is now split between two different simple product
bra-kets. And we see in the second step of the A and
B functions that we have quaternions defined from the
first step. Even though the measurement functions look
deterministic, they are not since QM cannot predict the
individual event by event outcomes. A plot of those out-
comes after proper analysis does not produce the negative
cosine curve. The probability remains at fifty percent for
either +1 or −1 results (up or down). The cross prod-
ucts in the functions do not contribute to that probability
but they do contribute to the −a · b probability via the
product of the functions. That is easy to see in the simu-
lation provided in the supplemental materials. Since the
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limit replacement functions emulate the action of the de-
tection polarizers, over many events, the average of the
action should be correct at about fifty percent.

Note that the measurement functions represent si-
multaneous detection processes occurring at two possi-
bly spacelike separated observation stations of Alice and
Bob. Although occurring simultaneously, A(a, s1) and

B(b, s2) are independent physical processes that are not
subject to the conservation of the initial zero spin angu-
lar momentum. Before proceeding with the product cal-
culation, the k indices will be suppressed after the first
step. Upon using the “product of limits equal to limits of
product” rule, leads to the expectation value calculated
as follows [7]:

E(a, b) = lim
n>>1

[
1

n

n∑
k=1

A(ak, sk1) B(bk, sk2)

]
(13)

= lim
n≫ 1

{
1

n

n∑
k=1

[
lim

s1 →µa

{q(ηas1 , ra)}
] [

lim
s2 →µb

{q(ηs2b, rb)}
]}

(14)

= lim
n≫ 1

[
1

n

n∑
k=1

lim
s1 →µa
s2 →µb

{
q(ηas1 , ra) q(ηs2b, rb)

}]
(15)

= lim
n≫ 1

[
1

n

n∑
k=1

lim
s1 →µa
s2 →µb

{
[cos(ηas1) + (I3ra) sin(ηas1)] [cos(ηs2b) + (I3rb) sin(ηs2b)]

}]
(16)

= lim
n≫ 1

[
1

n

n∑
k=1

lim
s1 →µa
s2 →µb

{
− q(ηab, r0)

}]
(17)

= lim
n≫ 1

[
1

n

n∑
k=1

lim
s1 →µa
s2 →µb

{
− cos( ηab)− (I3r0) sin( ηab)

}]
(18)

= − cos( ηab)− lim
n≫ 1

[
1

n

n∑
k=1

(
I3 0⃗

)
sin( ηab)

]
(19)

= − cos( ηab) + 0 (20)

= −a · b, (21)

with r0(s1, s2) =
(a · s1)(s2 × b) + (s2 · b)(a× s1)− (a× s1)× (s2 × b)

sin(ηab)
. (22)

Here in step (16) we have used the cosine and sine rep-
resentation of the quaternions along with the geometric
algebra pseudo-scalar, I3 = e1e2e3. When that is ex-
panded and calculated out using geometric algebra we
get step (17), see [6, 7]. In other words, the product of
two quaternions is another quaternion and r0 happens to
have all cross products in the numerator that are zero
when the limits are taken. So, in step (19), the limit re-
placement functions act only on the cross products of r0
and produce a null vector. Thus we obtain the correct
result via a completely local process. So, we can see here
that QM is completed by 3-sphere topology discussed in
[6, 7] via quaternions. And that the singlet has a paral-
lelized 3-sphere topology that is passed on to the particle
pair [5–7]. This is very easy to demonstrate via the Pauli

algebra.
We have verified the above analytical calculation via

a computer simulation using the programming language
of Mathematica, which is presented in the supplemental
materials as a PDF file [8]. The Mathematica notebook
file is also available at [9]; see also [10].
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